Math 105: Review for Final Exam, Part II

- 1. Consider the function $f(x) = x^6 2x^3$ on the interval [-2, 2].
 - (a) Find the x- and y-coordinates of any and all local extrema and classify each as a local maximum or local minimum.

- (b) Find the x- and y-coordinates of any and all global extrema and classify each as a global maximum or global minimum.
- (c) Find the x-coordinate(s) of any and all inflection points.

2. Your company is mass-producing a cylindrical container. The flat portion (top and bottom) costs 3 cents per square inch and the curved (lateral) portion costs 5 cents per square inch. If your budget is \$9.00 per container, what dimensions will give the largest volume?

area of circle = πr^2 lateral a

lateral area of cylinder = $2\pi rh$

volume of cylinder = $\pi r^2 h$

7. Water is leaking out of a tank at a decreasing rate r(t) as shown in the table below.

time (min)	0	2	4	6	8
rate (gal/min)	15	11	8	4	3

- (a) Find an overestimate and underestimate for the total amount that leaked out during these 8 minutes.
- (b) Interpret the expression $\int_2^6 r(t) dt$ in terms of the situation described above.
- 8. Consider the graph of f(t) shown. It is made of straight lines and a semicircle.

Let $G(x) = \int_0^x f(t) dt$ and $H(x) = \int_{-3}^x f(t) dt$.

- (a) Compute G(2), G(4), and H(4).
- (b) Where is G increasing? Where is G decreasing?
- (c) Where is G concave up? Where is G concave down?
- (d) At what x-value(s) does G have a local maximum? At what x-value(s) does G have a local minimum?
- (e) Find a formula that relates G and H.
- (f) How would your answers to (b), (c), and (d) change if the questions were about H instead of G?

9. (a) Use sigma notation to express L_{10} and M_{10} as approximations to $\int_{20}^{60} \ln x \ dx$.

(b) Draw a sketch that represents the sum M_4 .

- 10. Find the following.
 - (a) all antiderivatives of $1 + 2x + x^3 + 4\sqrt{x} + \frac{1}{x^5}$

(b)
$$\int_{-2}^{2} \sqrt{4-x^2} \, dx$$

(c)
$$\frac{d}{dx} \int_{1}^{x} \sin \sqrt{t} \, dt$$

(d)
$$\int_0^2 x^2 dx$$

Do this first with the limit definition of the definite integral then check your answer with the Fundamental Theorem.

You may use the fact that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$