MATH106B,C CALCULUS II - PROF. P. WONG

EXAM I - SEPTEMBER 27, 2013

NAME:

Instruction: Read each question carefully. Explain **ALL** your work and give reasons to support your answers.

Advice: DON'T spend too much time on a single problem.

Problems	Maximum Score	Your Score		
1.	20			
2.	20			
3.	20			
4.	22			
5.	18			
Total	100			

1.(10 pts.)(a) Evaluate the indefinite integral (be sure to show all your work)

$$\int (\sin x) e^{\cos x} \, dx.$$

Let $u = \cos x$. It follows that $du = -\sin x \, dx$ or $\sin x \, dx = -du$. Now we have

$$\int (\sin x)e^{\cos x} dx = \int e^u (-du)$$
$$= -\int e^u du = -e^u + C$$
$$= -e^{\cos x} + C.$$

(10 pts.) (b) Find the **exact value** of the definite integral (be sure to show all your work)

$$\int_0^2 \frac{1+e^x}{x+e^x} \, dx.$$

Let $w = x + e^x$ so that $dw = (1 + e^x) dx$. When $x = 0, w = 0 + e^0 = 1$. When $x = 2, w = 2 + e^2$. It follows that

$$\int_0^2 \frac{1+e^x}{x+e^x} dx = \int_1^{2+e^2} \frac{dw}{w}$$
$$= \ln |w| \Big|_1^{2+e^2}$$
$$= \ln(2+e^2) - \ln 1 = \ln(2+e^2).$$

2. Consider the region A in the first quadrant bounded by the curve $y = x^3$ and the curve y = x(2-x).

(15 pts.) Find the **exact area** of the region A.

In the first quadrant, the cubic $y = x^3$ and the parabola x(2-x) intersect at (0,0) and (1,1). By using vertical slices, the area of region A is given by

area of
$$A = \int_0^1 x(2-x) - x^3 dx$$

= $\int_0^1 2x - x^2 - x^3 dx = x^2 - \frac{x^3}{3} - \frac{x^4}{4} \Big|_0^1$
= $1 - \frac{1}{3} - \frac{1}{4} = \frac{5}{12}$.

Alternatively, if we use horizontal slices, we have

area of
$$A = \int_0^1 y^{1/3} - (1 - \sqrt{1 - y}) dy$$

$$= \frac{y^{4/3}}{4/3} - y - \frac{(1 - y)^{3/2}}{3/2} \Big|_0^1$$
$$= (\frac{3}{4} - 1) - (-\frac{2}{3}) = \frac{5}{12}.$$

(5 pts.) The same two curves $y = x^3$ and y = x(2 - x) also bound a region B in the third quadrant. Write a definite integral (do not evaluate) representing the area of region B. [By area, we mean the usual *physical* area not *signed* area.]

In the third quadrant, the two curves meet at (0,0) and (-2,-8). The *physical* area of region B is given by

$$-\int_{-2}^{0} x(2-x) - x^3 \, dx = \int_{-2}^{0} x^3 - x(2-x) \, dx.$$

3. (12 pts.) Consider a function h on the interval [0, 2].

x	0	0.5	1	1.5	2
h(x)	-1	1	3	2	-1

Find L_4, T_4 using the left-hand sum and the trapezoid rule respectively for estimating the definite integral $\int_0^2 h(x) dx$.

Here $\Delta x = 0.5$ so that

$$L_4 = [h(0) + h(0.5) + h(1) + h(1.5)] \cdot \Delta x$$

= [(-1) + (1) + (3) + (2)] \cdot (0.5) = 2.5.

Similarly, we have

$$R_4 = [h(0.5) + h(1) + h(1.5) + h(2)] \cdot \Delta x$$
$$= [(1) + (3) + (2) + (-1)] \cdot (0.5) = 2.5.$$

It follows that

$$T_4 = \frac{L_4 + R_4}{2} = \frac{2.5 + 2.5}{2} = 2.5$$

(8 pts.)(b) Recall that the error committed by using the right hand sum approximation R_n is less than or equal to $\frac{K_1 \cdot (b-a)^2}{2n}$ where $|f'(x)| \leq K_1$ for some constant K_1 over the interval [a, b]. Use this result to give an upper bound for the error committed by R_{10} for

$$I = \int_1^3 (\sin x) (\ln x) \, dx.$$

In order to find K_1 , first we find f'(x). Here, $f(x) = (\sin x)(\ln x)$, it follows from the product rule that

$$f'(x) = (\cos x)(\ln x) + (\sin x) \cdot \frac{1}{x}.$$

Over the interval [1,3], one can use a graphing calculator to see that f' is decreasing and that the maximum of the absolute value |f'(x)| actually occurs at x = 3 so that $|f'(x)| \le 1.041$. Choose $K_1 = 1.041$.

Now, the error committed by R_{10} is

$$\frac{(1.041)(3-1)^2}{20} = 0.2082$$

If you do not use a graphing calculator, we may estimate K_1 as follows. Since $|\cos x| \le 1$ and $|\sin x| \le 1$, we conclude that $|f'(x)| \le |\ln x| + \frac{1}{x}$. Over the interval [1,3], $\ln x \le \ln 3$ and $\frac{1}{x} \le 1$. Thus, $|f'(x)| \le 1 + \ln 3$ or we can choose $K_1 = 1 + \ln 3$. We then proceed the error esitmation as before.

4. Let R be the region bounded by the curve $y = \frac{2}{x}$, the line y = 1, the line y = 2, and the line x = 1.

(12 pts.) (a) Set up (do not evaluate) a definite integral representing the volume of the solid obtained from rotating the region R around the line x = 0, i.e., the y-axis. [Hint: sketch a picture of the region R first.]

If we use horizontal slices, then a typical slice (green) looks like a "washer" with thickness Δy . Thus, the volume of the solid is given by

$$\int_{1}^{2} \pi(\frac{2}{y})^{2} - \pi(1)^{2} dy.$$

If you use vertical slices, then a typical slice (red) looks like a "cylindrical shell" with thickness Δx . Thus, the volume of the solid is given by

$$\int_{1}^{2} 2\pi(x) \cdot (\frac{2}{x} - 1) \, dx.$$

(10 pts.) (b) Find the **exact volume** of the solid described in part (a).

From part(a), the volume is

$$\int_{1}^{2} \pi \left(\frac{2}{y}\right)^{2} - \pi(1)^{2} \, dy = \pi \int_{1}^{2} 4y^{-2} - 1 \, dy$$
$$= \pi \left(\frac{4y^{-1}}{-1} - y\right)\Big|_{1}^{2}$$
$$= \pi [(-2 - 2) - (-4 - 1)] = \pi [-4 + 5] = \pi.$$

5. Consider the initial value problem

$$\frac{dy}{dx} = (1+y^2)e^x$$

with y(0) = 0.

(10 pts.)(a) Use the technique of separation of variables to solve the Initial Value Problem.

Rewriting the differential equation by separating the variables, we have

$$\int \frac{dy}{1+y^2} = \int e^x \, dx.$$

It follows that

(1) $\arctan y = e^x + C.$

Since y(0) = 0 and $\arctan 0 = 0$, (1) becomes $0 = e^0 + C$ so C = -1. Now, (1) becomes $\arctan y = e^x - 1$ or

$$y = \tan(e^x - 1).$$

(8 pts.)(b) Set up (do not evaluate) a definite integral for the arc length of the portion of the graph of $f(x) = x \ln x$ between x = 1 and x = e.

Note that $f'(x) = \ln x + x \cdot \frac{1}{x} = 1 + \ln x$. It follows that the arc length is given by the following definite integral

$$\int_{1}^{e} \sqrt{1 + (1 + \ln x)^2} \, dx.$$