MATH106A CALCULUS II - PROF. P. WONG

EXAM II - MARCH 13, 2015

NAME:

Instruction: Read each question carefully. Explain ${\bf ALL}$ your work and give reasons to support your answers.

Advice: DON'T spend too much time on a single problem.

Problems	Maximum Score	Your Score
1.	20	
2.	20	
3.	20	
4.	20	
5.	20	
Total	100	

1. Evaluate each of the following indefinite integrals (be sure to indicate what techniques you use).

(10 pts.)(a)
$$\int \cos^2 x \sin x \ dx.$$

Let $u = \cos x$ so that $du = -\sin x \ dx$. It follows that

$$\int \cos^2 x \sin x \, dx = -\int u^2 \, du = -\frac{u^3}{3} + C$$
$$= -\frac{\cos^3 x}{3} + C.$$

(10 pts.)(b)
$$\int x \cos(3x) dx.$$

Let u = x and $dv = \cos(3x) dx$. Then, du = dx and $v = \frac{\sin(3x)}{3}$. It follows from the technique of integration by parts that

$$\int x \cos(3x) \ dx \stackrel{\text{IBP}}{=} x \cdot \frac{\sin(3x)}{3} - \int \frac{1}{3} \sin(3x) \ dx$$
$$= \frac{x}{3} \sin(3x) + \frac{1}{9} \cos(3x) + C.$$

2. Evaluate each of the following indefinite integrals (be sure to indicate what techniques you use).

$$(10 \text{ pts.})(a)$$

$$\int \frac{x^3 + 1}{x^2 - 4} \ dx.$$

Since the numerator has higher degree than that of the denominator, we use long division to write the rational function as

$$\frac{x^3+1}{x^2-4} = x + \frac{4x+1}{x^2-4} = x + \frac{4x+1}{(x+2)(x-2)}.$$

Write $\frac{4x+1}{(x+2)(x-2)} = \frac{A}{x+2} + \frac{B}{x-2}$ so that

$$4x + 1 \equiv A(x - 2) + B(x + 2).$$

At x = 2, we have 9 = 4B or $B = \frac{9}{4}$. At x = -2, we have -7 = -4A or $A = \frac{7}{4}$. Thus,

$$\frac{x^3+1}{x^2-4} = x + \frac{7}{4} \cdot \frac{1}{x+2} + \frac{9}{4} \cdot \frac{1}{x-2}.$$

Hence,

$$\int \frac{x^3 + 1}{x^2 - 4} \, dx = \frac{x^2}{2} + \frac{7}{4} \ln|x + 2| + \frac{9}{4} \ln|x - 2| + C.$$

$$\int \frac{1}{(x^2+1)^{3/2}} \ dx.$$

Let $x = \tan \theta$ so that $dx = \sec^2 \theta \ d\theta$. It follows that

$$\int \frac{1}{(x^2+1)^{3/2}} dx = \int \frac{\sec^2 \theta}{(\tan^2 \theta - 1)^{3/2}} = \int \frac{\sec^2 \theta}{\sec^3 \theta} d\theta$$

$$= \int \frac{1}{\sec \theta} d\theta = \int \cos \theta d\theta$$

$$= \sin \theta + C \quad (\text{now use the triangle of substitution})$$

$$= \frac{x}{\sqrt{1+x^2}} + C.$$

3. Evaluate each of the following improper integrals.

(10 pts.)(a)

$$\int_0^\infty \frac{x \ dx}{(x^2+1)^2}$$

First, $\int_0^\infty \frac{x \ dx}{(x^2+1)^2} = \lim_{b \to \infty} \int_0^b \frac{x \ dx}{(x^2+1)^2}$. Now, let $u = x^2 + 1$ so $du = 2x \ dx$. It follows that

$$\int \frac{x}{(x^2+1)^2} dx = \frac{1}{2} \int \frac{du}{u^2} = -\frac{1}{2u} + C$$
$$= -\frac{1}{2(x^2+1)} + C.$$

Now,

$$\int_0^\infty \frac{x \ dx}{(x^2+1)^2} = \lim_{b \to \infty} \int_0^b \frac{x \ dx}{(x^2+1)^2} = \lim_{b \to \infty} -\frac{1}{2(b^2+1)} + \frac{1}{2} = \frac{1}{2}.$$

(10 pts.)(b)

$$\int_0^2 \frac{dx}{(x-1)^{2/3}}$$

First note that this integral is *improper* since $\frac{1}{(x-1)^{2/3}}$ is not defined at x=1. Thus, we rewrite the integral as

$$\int_0^2 \frac{dx}{(x-1)^{2/3}} = \int_0^1 \frac{dx}{(x-1)^{2/3}} + \int_1^2 \frac{dx}{(x-1)^{2/3}}$$
$$= \lim_{b \to 1} \int_0^b \frac{dx}{(x-1)^{2/3}} + \lim_{c \to 1} \int_c^2 \frac{dx}{(x-1)^{2/3}}.$$

A simple substitution with u = x - 1 shows that $\int \frac{dx}{(x-1)^{2/3}} = \int u^{-2/3} \ du = 3u^{1/3} + C = 3(x-1)^{1/3} + C$. Now,

$$\lim_{b \to 1} \int_0^b \frac{dx}{(x-1)^{2/3}} = \lim_{b \to 1} (3(b-1)^{1/3} - 3(-1)^{1/3}) = 3$$

and

$$\lim_{c \to 1} \int_{c}^{2} \frac{dx}{(x-1)^{2/3}} = \lim_{c \to 1} (3(1)^{1/3} - 3(c-1)^{1/3}) = 3.$$

Therefore,

$$\int_0^2 \frac{dx}{(x-1)^{2/3}} = 3 + 3 = 6.$$

4. Let $f(x) = \frac{1}{2x-1}$.

(8 pts.)(a) Find the third-order Taylor polynomial $P_3(x)$ of f(x) centered at $x_0 = 1$.

Since $f(x) = (2x - 1)^{-1}$, we have $f'(x) = -2(2x - 1)^{-2}$, $f''(x) = 8(2x - 1)^{-3}$ and $f'''(x) = -48(2x - 1)^{-4}$. It follows that f(1) = 1, f'(1) = -2, f''(1) = 8 and f'''(1) = -48. Now, the third-order Taylor polynomial is given by

$$P_3(x) = 1 + (-2)(x - 1) + \frac{(8)}{2!}(x - 1)^2 + \frac{(-48)}{3!}(x - 1)^3$$
$$= 1 - 2(x - 1) + 4(x - 1)^2 - 8(x - 1)^3.$$

(6 pts.)(b) Find the third-order Maclaurin polynomial $M_3(x)$ of f(x).

Using (a), with $x_0 = 0$, we have f(0) = -1, f'(0) = -2, f''(0) = -8, f'''(0) = -48. Thus the third-order Maclaurin polynomial is given by

$$M_3(x) = (-1) + (-2)x + \frac{(-8)}{2!}x^2 + \frac{(-48)}{3!}x^3$$
$$= -1 - 2x - 4x^2 - 8x^3.$$

(6 pts.)(c) What is the maximum error committed by using $M_3(x)$ (as in part (b)) over the interval [1, 2], according to Taylor's Theorem? [Hint: how do you obtain K_4 ?]

To obtain K_4 , first note that $f^{(4)}(x) = 384(2x - 1)^{-5}$. Over the interval [1.2], $|f^{(4)}(x)| \le 385(2 - 1)^{-5} = 384$. Thus, choose $K_4 = 384$. According to Taylor's theorem, we have

$$|f(x) - M_3(x)| \le \frac{K_4}{4!}|x - 0|^4 \le \frac{384}{4!} \cdot 2^4 = 256.$$

5. (12 pts.)(a) Use comparison to determine whether the following improper integral converges or diverges. Justify your answer.

$$\int_{4}^{\infty} \frac{1}{x^2 \ln x} \ dx$$

For $x \ge 4$, $\ln x > 1$ so $x^2 \ln x > x^2$. It follows that $\frac{1}{x^2 \ln x} < \frac{1}{x^2}$ so that

$$0 < \int_{4}^{\infty} \frac{1}{x^2 \ln x} \, dx < \int_{4}^{\infty} \frac{1}{x^2} \, dx < \int_{1}^{\infty} \frac{dx}{x^2}$$

which converges by the *p*-test with p=2>1. Thus we conclude that $\int_4^\infty \frac{1}{x^2 \ln x} \ dx$ converges.

(8 pts.)(b) Consider the following function

$$f(x) = \begin{cases} \frac{C}{(x+1)^3}, & \text{for } x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

For what value of C is f(x) a probability density function?

For f to be a p.d.f., $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$. So $C \ge 0$. Note that

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{0}^{\infty} \frac{C}{(x+1)^{3}} \ dx = \lim_{b \to \infty} \int_{0}^{b} \frac{C}{(x+1)^{3}} \ dx$$
$$= \lim_{b \to \infty} -\frac{C}{2} (x+1)^{-2} \Big|_{0}^{b} = -\frac{C}{2} \lim_{b \to \infty} [(b+1)^{-2} - (1)^{-2}]$$
$$= -\frac{C}{2} [0-1] = \frac{C}{2}.$$

The condition $\int_{-\infty}^{\infty} f(x) dx = 1$ implies that $\frac{C}{2} = 1$ or C = 2.